Integral Points on Elliptic Curves Defined by Simplest Cubic Fields
نویسنده
چکیده
CONTENTS Introduction 1. Elliptic Curves Defined by Simplest Cubic Fields 2. Linear Forms in Elliptic Logarithms 3. Computation of Integral Points 4. Tables of Results 5. General Results about Integral Points on the Elliptic Curves y2 = x3 + mx2 (m+3)x + 1 References Let f(X) be a cubic polynomial defining a simplest cubic field in the sense of Shanks. We study integral points on elliptic curves of the form Y2 = f(X). We compute the complete list of integral points on these curves for the values of the parameter below 1000. We prove that this list is exhaustive by using the methods of Tzanakis and de Weger, together with bounds on linear forms in elliptic logarithms due to S. David. Finally, we analyze this list and we prove in the general case the phenomena that we have observed. In particular, we find all integral points on the curve when the rank is equal to 1.
منابع مشابه
Elliptic curves with weak coverings over cubic extensions of finite fields with odd characteristics
In this paper, we present a classification of classes of elliptic curves defined over cubic extension of finite fields with odd characteristics, which have coverings over the finite fields therefore can be attacked by the GHS attack. We then show the density of these weak curves with hyperelliptic and non-hyperelliptic coverings respectively. In particular, we shown for elliptic curves defined ...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملTORSION OF RATIONAL ELLIPTIC CURVES OVER CUBIC FIELDS AND SPORADIC POINTS ON X1(n)
We classify the possible torsion structures of rational elliptic curves over cubic fields. Along the way we find a previously unknown torsion structure over a cubic field, Z/21Z, which corresponds to a sporadic point on X1(21) of degree 3, which is the lowest possible degree of a sporadic point on a modular curve X1(n).
متن کاملElliptic curves with weak coverings over cubic extensions of finite fields with odd characteristic
In this paper, we present a classification of elliptic curves defined over a cubic extension of a finite field with odd characteristic which have coverings over the finite field therefore subjected to the GHS attack. The densities of these weak curves, with hyperelliptic and non-hyperelliptic coverings, are then analyzed respectively. In particular, we show, for elliptic curves defined by Legen...
متن کاملTorsion Groups of Elliptic Curves with Integral j-Invariant over Pure Cubic Fields
We determine all possible torsion groups of elliptic curves E with integral j-invariant over pure cubic number fields K. Except for the groups Z/22, Z/32 and Z/22 @ Z/22, there exist only finitely many curves E and pure cubic fields K such that E over K has a given torsion group E,, (K), and they are all calculated here. The curves E over K with torsion group E roOR( K) r Z/22 0 Z/22 have j-inv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental Mathematics
دوره 10 شماره
صفحات -
تاریخ انتشار 2001